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Abstract

Ribonucleic acid (RNA) is a chain-like molecule akin to a string of characters

which is found ubiquitously in every living cell. RNA effects crucial func-

tions as an information carrier like DNA, and in catalyzing reactions and

regulating interactions like proteins. A defining characteristic of RNA func-

tion is that it is determined by the spatial organization (2D and 3D) of its

polymeric chain which in turn is encoded in its sequence. This property gave

rise to three major problems in the way of understanding and manipulating

RNA function: RNA structure modelling, prediction, and classification. For

the past four decades that the field has been active, efficient and expressive

mathematical solutions to these problems have led to major advances in

the biological and medical fields. In this review, we introduce the hierar-

chical nature of RNA structure and provide a brief overview of the major

computational contributions at each level of the hierarchy.

1 RNA Biology

RNA are a large class of bio-molecules that are crucial in proper functioning

of cells of all living organisms [2]. Similar to proteins and DNA, RNA are

1



highly structured molecules on various levels. However, unlike the two other

central biomolecules, RNA structure has been severely under-studied (due

largely to technical difficulties in RNA biochemistry) despite their crucial

importance in an ever growing number of biological functions. In one dimen-

sion, RNA are polymers made up of sequences of linked monomers known

as nucleotides (or bases) which can be any of the four types: adenosine (A),

uracil (U), cytosine (C), guanine (G). Canonical pairings between bases (A-

U, C-G, G-U) in primary sequence give rise to interactions that define a

2D shape, known as the secondary structure. And finally, in 3 dimensions,

higher order interactions between the nucleotides and secondary structure

elements give rise to a 3D structure Fig. 1.

Information about an RNA’s structure at all levels is critical to under-

standing its function. The primary sequence of a messenger RNA is read

directly by special proteins and other RNAs to synthesize the appropriate

protein during the process of translation. The formation of secondary struc-

ture elements can be used to regulate the process of translation by physically

blocking access to the RNA’s primary sequence by the translation machin-

ery. Furthermore, the secondary structure of an RNA serves as a scaffold

for the higher order 3D interactions which directly mediate RNA function

as an independently catalytic molecule [1]. As can be seen in Fig. 1, there

are

It is clear that a set of computational tools for efficiently modelling

and predicting the nature of these interactions at every level is crucial to

the aim of understanding key biological processes and engineering solutions

when these processes fail. In this text we will review some of the major

developments in computational modelling of RNA structure on the 2D and

3D level and its applications for structure prediction and classification.

2 RNA Secondary Structure

It is widely accepted that the majority of information necessary for form-

ing RNA structure is encoded in its primary sequence [1]. We define an

RNA sequence, or primary structure, as a string from a 4 letter alphabet
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Figure 1: Example of an RNA represented in the three structural levels:
nodes in the graph represent a continuous chain of nucleotides (primary
structure) and compose the sequence, planar pairwise interactions between
nodes define secondary structure elements (labeled by name), and boxes
(labeled A-D) represent the 3D geometry of structural elements at an atomic
level. Figure taken from [13].
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consisting of the 4 RNA bases ω ∈ {A,U,C,G}+. One of the first tasks

in understanding RNA structure was to develop algorithms to efficiently

predict the secondary structure given a particular sequence. We define a

secondary structure S := {(i1, j1), ..., (ik, jk), ...(iN , jN )} as a set of pairs of

indices in ω where N is the length, or number of bases in the sequence.

A valid secondary structure is a set of pairings in the form (i, j) between

indices obeying the following conditions:

i.) (i, j) must form a valid Watson-Crick pairing

ii.) Each base i can pair with 1 or 0 other bases

iii.) i < j − p. Pairing bases must have at least p unpaired bases between

them. Typically p = 3. (Minimal loop size)

iv.) If pairs (i, j) and (k, l) are in the structure, then (il, jl), jk < il or

jk > jl must hold. This eliminates crossing interactions (see below).

As we are dealing with structure in two dimensions, we do not allow any

crossing pairs. Although crossing interactions, or pseudoknots, are known to

be present in real structures, there are currently no reliable energy measure-

ments which can be used in efficient structure prediction methods. Most 2D

folding algorithms only permit canonical A-U, C-G pairs, and ‘wobble’ G-U.

Although it is known that other pairings are possible, their energetic contri-

butions are not well established, and it is typically the case that canonical

and wobble interactions are most involved in secondary structure forma-

tion. Finally, we enforce that a base can only be involved in one pairing

interaction with another base.

We note that this review will not cover physics based simulation ap-

proaches due to their prohibitive computational costs and lack of conver-

gence guarantees.

2.1 Predicting RNA 2D Structure

One of the first algorithmic approaches to the problem of secondary structure

prediction, which laid the groundwork for the current state of the art was the
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Nussinov algorithm, proposed in 1980 [11]. The Nussinov algorithm aims

at finding the structure with the maximum number of base pairs, which

uses the heuristic that base pairs have a stabilizing effect on the overall

structure energy. Using this simple assumption, the Nussinov algorithm

is able to efficiently identify maximally pairing structures using dynamic

programming (DP). The problem is broken down in two major steps:

i.) Compute and store OPT (i, j)∀i, j ∈ [1, N ] where OPT (i, j) is the score

of the lowest energy structure between indices i and j.

ii.) Retrieve the final pairing by tracing back the recursive calls in the DP

table from entry OPT (1, N).

The definition of secondary structure above then leads to a natural de-

composition of secondary structure which can be written using the following

recursion:

OPT (i, j) =


OPT (i, k − 1) +OPT (k + 1, j − 1) + 1 j paired with

k ∈ [i, j − 1]

OPT (i, j − 1) i and j unpaired

Where OPT (i, j) contains the optimal score of a structure on indices

between i and j. Filling the table OPT in increasing order allows us to use

previously computed results in adjacent cells for efficient computation. We

use the minimal loop size and the crossing criteria as stopping conditions in

the recursion. The computation of maximal base pairings for every subse-

quence can therefore be achieved in time O(N3) where N is the length of the

input sequence. The Nussinov algorithm was a simple, yet very large con-

ceptual step forward in secondary structure prediction as its predecessors all

required user interaction or expensive atomistic simulations. However, in its

founding around base pairs it was unsuited for incorporating experimental

energy that was only for larger secondary structure elements.

Soon after, Zuker [15] proposed a similar dynamic programming frame-

work that would consider the energetic contributions of the space between
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bonds instead of Nussinov’s method of counting bonds. This shift allowed

the algorithm to incorporate energetic values from experimental measure-

ments made on various RNA ‘building blocks’, or structural elements Fig.

1. These elements include: stacks (consecutive base pairs), hairpin loops

(loops closed by a single base pair), interior loops (loops closed by two base

pairs), and bifurcation loops (loops closed by two or more base pairs). From

experimental measurements, energy values can be associated to each build-

ing block and so the problem of identifying the MFE structure corresponds

to finding the structure with the minimal sum of block energies. With this

problem definition, similar recursive formulas as those used by Nussinov can

be used to populate the dynamic programming table of all possible energies

on the subsequences ωi, ωj and backtrack to reconstruct a optimal solution

again in O(n3). While accuracy of Zuker’s folding protocol validated against

experimentally solved structures still showed room for improvement, Zuker

provided a key insight into the limitations of a purely theoretical approach:

A program based solely on conformational rules and thermodynamics
will not yield a biologically meaningful folding of a molecule on its own.
There are too many different structures with similar energies. More
and different kinds of additional information must be incorporated into
the algorithm as well. – Zuker, 1981

Approaches which take advantage of evolutionary information are dis-

cussed in the next section address this remark.

2.2 Classifying RNA Structural Families

The efficient computational framework laid out from de novo structure pre-

diction efforts then led to the design of structure aware probabilistic models

for sequence classification. Because function is determined by an RNA’s

structure, sequence is generally less conserved than structure, and pairs in

the structure are preserved through compensatory mutations. Statistical

models are able to take advantage of this information in sequences and al-

low us to build what are known as RNA Structural Families. We call a

set of RNA molecules sharing a common structure (but often diverse set of

sequences) an RNA family. Statistical models of families are crucial tools
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for classification, improved structure prediction, as well as functional predic-

tion of novel sequences. Indeed, over the years sequences belonging to many

RNA families with well defined functions and structures (tRNA, rRNA, in-

tron RNA, etc.) have been published in databases. The task is therefore

to build statistical models representing each family and allow for efficient

searching for matches to the model.

Covariance Models

A major step toward solving this problem was proposed in 1994 by Eddy

and Durbin [5, 4] which models RNA secondary structures using stochastic

context free grammars (SCFGs). A grammar is a set of rules that are able

to generate sequences of a desired form. A stochastic grammar is one that

generates sequences in a probabilistic manner, and a context-free grammar

is one where the generation of a character in the sequence is independent

of its placement in the sequence. Given an RNA alignment which contains

a set of sequences whose conserved bases share an index, and a secondary

structure that is thought to be shared among all sequences in the alignment

(also known as the consensus structure), the SCFG more generally known as

a covariance model (CM) learns a set of generation rules and probabilities

that can generate sequences belonging to the family in the alignment. The

CM is a very powerful tool that solves many problems in RNA sequence

analysis. CMs typically start from a pre-built alignment and consensus

structure which readily allows for database searches for novel instances of

a family. However, CMs can also be built from initially unaligned and

unknown consensus structures therefore have the potential to simultaneously

perform alignment and structure prediction.

CMs encode sequence and structure simultaneously as an ordered tree.

As an example, we begin from a grammar tree that is able to represent a

single RNA secondary structure and sequence. Such a tree has a branching

pattern that reflects the branches of an RNA structure and nodes that emit

either pairs of bound bases or singlet unpaired bases. This representation

can then be abstracted to model an RNA alignment, or a collection of similar
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RNA sequences. Instead of nodes occupying sequence pairs, they are asso-

ciated with states that can emit a portion of an RNA alignment with some

probability. We model transitions between states to allow the production of

different elements of an RNA. Transitions between states are also assigned

a probability. States in the model of an RNA alignment more specifically

correspond to elements such as sequence matches, insertions, deletions and

bifurcations (branchings). The model can be visualized as a tree Fig. 2 or

more compactly summarized as a set of grammar production rules (1).

P → aWb pair:a, b ∈ {A,U,C,G}

L→ aW left or 5’ insertion

R→Wa right or 3’insert

B → SS bifurcation

S →W start

E → ε end

(1)

Each state contains a production rule that is used to build from the

starting string W and sequentially replace it with a string whose format

follows one of the production rules. A traversal through this tree or grammar

would then produce a representative instance of the alignment consensus

sequence and structure. The principal operation of interest given a CM to

compute the likelihood P (ω|θ) of a sequence ω and an optimal alignment

to the model given a CM θ. We can simultaneously achieve both using a

dynamic programming approach. The key insight here is to compute the

likelihood score on growing subsequences of ω and on growing subtrees of

θ. This is similar to the Nussinov style decomposition except we add an

extra dimension which is the index m of the root of the subtree of the CM

being considered thus generating a three dimensional table of scores Si,j,m

where S1,N,M holds the likelihood score for the entire sequence over the

whole model. A backtrack over this table yields the optimal alignment to

the model. Similarly, when given a set of unaligned sequences, a modified

Nussinov algorithm can be used to construct the optimal tree and consensus
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Figure 2: Example of an SCFG tree (left) representing a two hairpin RNA
structure (middle) and a parse tree (right) showing the state emissions of
the grammar that produce the observed sequence. Figure taken from [4].
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structure by introducing the concept of mutual information over pairs of

alignment columns. Pairs of columns (aligned sequence positions) i and

j with high mutual information are considered as pairs in the consensus

structure where mutual information is defined as follows:

Mi,j =
∑
xi,xj

fxixj log2
fxixj

fi fj
(2)

The value Mi,j can be substituted directly into the pairing score portion

of Nussinov recursion to produce a consensus secondary structure. Thus

the concept of correlations in sequences due to structure conservation is

harnessed for structure prediction.

Building probabilistic models of RNA families allows for full genomes

to be scanned in polynomial time for the presence of novel members. It is

important to note that although all the algorithms are polynomial in time,

the number of sequences being considered is typically high which often leads

to CPU and memory expensive computations. The algorithms described

were implemented in the software infeRNAl [10] which was used to build

the popular Rfam database [6] which contains thousands of curated RNA

families with sequence and structure information.

3 RNA Tertiary Structure

While the importance of RNA 2D structure to function motivated the de-

velopment of a wide range of mathematical tools for many years, recent

findings suggest that RNA also exhibit complex yet functional interaction

patterns in three dimensions Fig. 1. Most importantly, it was found that

knowledge of the 3D arrangement of atoms in an RNA yields the most in-

formation about a given RNA’s function [1]. Here, we define an RNA 3D

structure simply as the set of atoms and their corresponding coordinates

in 3D space. Obtaining this information is often involves X-ray crystalliza-

tion, a particularly challenging experiment for RNA compared to DNA and

proteins.
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3.1 Predicting RNA 3D Structure

The aim of 3D structure prediction most generally is to produce a 3D ar-

rangement of all the atoms in an RNA from a given input sequence. In 2D

structure, prediction algorithms relied on a fundamental structural unit such

as a base pair or secondary structure element whose energy contribution was

known. Although there exists such of 3D structure building block (3D motif)

which will be discussed in 3.1.2 we currently do not have a set of reliable

experimentally obtained energies that can be readily used in a prediction

algorithm. Therefore, the class of algorithms used for 3D prediction will

be more statistical in nature. For this reason, the most accurate means of

producing atomistic tertiary structures currently is through physical simu-

lations and energy minimization, known as Molecular Dynamics. However,

such simulations are prohibitive in computation time, vulnerable to local

minima and often require a good initial 3D structure as user input. Here we

review a set of tools that take algorithmic and statistical approaches to this

problem with the sacrifice of detail for gains in computational efficiency.

3.1.1 MC-Sym

MC-Sym [8] was one of the first efforts at an algorithmic approach to solve the

RNA 3D structure prediction problem (3DP). The algorithm produces full

3D atomic structures from an input sequence by solving a constraint satis-

faction problem. Constraints for RNA folding are extracted from a database

of experimentally solved 3D structures as well as from knowledge of the se-

quence’s secondary structure. The algorithm encodes the constraints as a set

of allowed variable assignments, and produces values from the set of allowed

values D to each variable. Variables correspond to 3D coordinates, as well

as angles between residues in the RNA. The algorithm iterates one variable

at a time through possible assignments, and if an assignment is inconsistent,

a backtrack is performed and a different assignment is obtained. This is an

instance of a constraint satisfaction problem using symbolic programming.

It is important to note that this process does not produce a final structure,

and the result of the constraint satisfaction problem is sent to an energy
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Figure 3: Leontis-Westhof nomenclature of RNA base pair interaction types.
On the left an example of an RNA base (blue) interacting through each
of its 3 edges with 3 other nucleotides illustrating the possible interaction
geometries. The right hand side shows a schematic representation with the
corresponding graphical notation.

minimization procedure to produce a refined structure. The computational

efficiency of this method is limited greatly by the knowledge of structural

constraints however, MC-Sym was still able to recreate pseudoknotted and

branched structures.

3.1.2 RMDetect

At a higher level, Leontis and Westhof in 2001 [7] systematically defined

a set of 12 possible geometrical arrangements of each of the 4 RNA bases

from observations of known RNA 3D atomic structures. Leontis and Westhof

found that each RNA base can be modelled as a right angled non isosceles

triangle Fig. 3 with three distinct edges: Watson, Sugar, and Hoogsten

edge.

Furthermore, each of the interaction types be rotated into a cis or trans

configuration. Given that there are four types of RNA base, each capable of

interacting through one of its 3 edges with any other base, we get a set of 12

possible pairing geometries. Watson-Watson interactions are known as the

‘canonical’ base pairs which define the 2D structure, and the rest are termed
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‘non-canonical’ and are highly prevalent in defining RNA tertiary structure.

Patterns of non-canonical interactions have been shown to mediate ligand

binding, catalysis and protein recognition [1]. This classification naturally

gives rise to a representation of 3D structure as a graph whose nodes are

nucleotides that are connected by edges which can take on any of the 12

interaction types. It has been shown that these graphs define what are

known as 3D Modules which have been found to function in many unrelated

RNAs [9].

Cruz and Westhof in RMDetect [3] then used the graphical interpretation

of 3D modules to build probabilistic models of known structural patterns

and accurately predict the presence of a 3D module in a given sequence,

P (θ|ω). Due to the graphical structure of the model, RMDetect uses Bayesian

Networks to compute P (θ|ω) where each node in the network represents a

probability distribution over the 4 nucleotides conditioned on the its parent

nodes (directed edges). The parameters on these distributions P (ω|θ) are

learned from a set of aligned sequences in Rfam which are known to contain

a given 3D module. Once a set of modules have been trained, one can scan

an input sequence and identify the Bayes net that produces the highest

likelihood among the set of known modules. This approach is of course

limited by the number of modules that are defined during the scanning

and the availability of sequence information for each module. Regardless,

RMDetect was able successfully predict some of the major known 3D modules

and the discover of novel instances of the modules.

3.1.3 JAR3D

JAR3D in 2013 identified and aimed to resolve an important bias in the model

training procedure used by RMDetect. That is, the assumption that all se-

quences in an Rfam multiple sequence alignment of RNA sequences for one

instance of a 3D module all fold to that same module in reality. RMDetect

relies on this assumption to parametrize the graphical models built from a

crystal structure, however there is no reason to believe that this assumption

will always hold. Therefore, it is important to develop models that can cap-
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ture sequence variability using only known structural information. To this

end, JAR3D starts from recognized structural interaction motifs (see section

3.2) to derive the novel hybrid SCFG/Markov Random Field (MRF) repre-

sentations of 3D modules. MRFs, which are a generalized version of Bayesian

Networks with undirected edges, are introduced to model dependencies that

cannot be modelled by an SCFG. Such interactions include crossing pairs

and base triples where one base has more than one partner. The models

are then parametrized using a combination of isostericity knowledge and

sequence variability from other known instances of the module. Isostericity

in RNA 3D interactions refers to a set of discrepancy measurements from

observed structures that reflect the extent to which nucleotide substitutions

can preserve the same base pair geometry [14]. For each base pairing family,

a 4x4 matrix with similarity measures was obtained which is used by JAR3D

to model the sequence variability at each pairing position. Finally, where

there exist other known instances of a 3D module, JAR3D incorporates the

interaction information to better model the actual sequence variability. As

a result, JAR3D was able to detect sequence instances of motifs in a more

flexible manner without relying on the RMDetect alignment data. Of course,

this approach is limited by the capacity of the model to efficiently represent

interaction types which at the moment is limited to only internal and hairpin

elements.

3.2 Classifying RNA 3D Modules

Specific 3D interaction patterns have been shown to be highly conserved

and therefore contain important information regarding the function and ge-

ometry of an RNA. Therefore, building organized catalogues of modules is

crucial for assisting in function prediction as well as improving structure

prediction (as seen in 2.2). We consider two types of conserved interaction

pattern, or 3D module as the building block of such catalogue: A local motif

is a set of characteristic base pairing interactions that are close together in

structure (i.e. located within the same secondary structure element; inter-

nal loops, hairpins, etc.), while a long range motif involves interactions that
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connect two or more secondary structure elements. It is important to note

that in both cases, the defining feature is the Leontis-Westhof interaction

type. Nucleotide identity is often allowed to so long as it preserves the 3D

geometry. Here we review two motif cataloguing approaches, each of which

addresses one of the motif types.

3.2.1 RNA 3D Atlas

Petrov et. al [12] in 2013 developed an automated system for identifying

and grouping local recurrent 3D motifs. In its current form, the 3D Atlas

only catalogues motifs found within internal loops and bulges due to their

richness in non-canonical interactions and their topological simplicity. The

3D Atlas automatically extracts interactions within loops labeled using the

Leontis Westhof annotation from a large repository of non-redundant RNA

crystal structures as the fundamental unit of the atlas. An all-against-all

geometric comparison is performed which results in a matrix M containing

similarity scores for every pair of structures. The next task is to identify

sets of structures that are all mutually similar to each other. Such a group

is deemed to be a recurrent motif. RNA 3D Atlas takes a graph theoretic

approach to solve this problem by using M to define a graph G where nodes

represent motif candidates connected by edges if they satisfy a fixed similar-

ity score. Because the most populated motifs are of interest, the algorithm

repeatedly identifies the largest motif and removes it from the graph. This

problem is an iterative repetition of the maximum clique problem, where a

clique is defined as a connected set of nodes in the graph and a maximal

clique is the clique of the highest cardinality in the graph. The maximum

clique problem has been shown to be NP-complete, however speed-ups are

achieved by reducing the number of nodes to be checked using fast approx-

imate graph coloring algorithms. The main intuition is that the number of

colors used in a clique must be equal to the size of the clique. Therefore,

graphs can be efficiently pre-processed by eliminating nodes a priori that

cannot belong to the maximal clique. Once this process has been repeated

sufficient times, exact maximum clique algorithms are applied. The result
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is an automatically updated database which capture the major known 3D

modules, as well as hundreds of novel modules. The major limitation how-

ever is that these currently only include local motifs and of the local motifs

only internal and hairpin loops are modelled.

3.2.2 CaRNAval

Simultaneously modelling short range and long range interaction motifs is

computationally challenging due to the explosion in interactions to search,

and for this reason RNA 3D Motif classifies only short range motifs. CaRNAval [13],

developed shortly after addresses the problem of identifying recurrent long

range motifs. Similar to RNA 3D Motif, CaRNAval takes a graph theoretic

approach to identifying groups of similar motifs. CaRNAval directly models

each RNA structure as a graph where nodes represent nucleotides and edges

represent interaction types with labels: {c, t}×{W,S,H}2 Fig. 4. Because

the aim is to find recurrent interaction networks, nucleotide identity is not

considered and the only labeled element of the graph are the edges. For each

edge there is an additional binary label indicating whether an interaction

is long or short range. CaRNAval builds the database by finding the ‘maxi-

mal interaction modules’ between two graphs, which it defines as a common

edge-labelled subgraph of two graphs which share at least two long-range

edges. The problem of finding the maximal subgraph isomorphism is NP-

Hard. CaRNAval therefore employs a heuristic to limit the search space by

iteratively building larger common subgraphs from an initial set of shared

long-range interactions and limiting its search to only long range motifs.

Using this technique on a set of non-redundant interaction pairs, 136 inter-

action motifs were identified which themselves can occur as subgraphs of

other motifs forming a large network of known (such as the A-minor motif)

and novel long-range interaction patterns. Currently, this approach is lim-

ited to finding interaction patterns only between pairs of secondary structure

elements whereas it is possible that there could be higher order interactions

at play.
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Figure 4: Graphical representation of two interacting secondary structure
elements by CaRNAval. Interactions are labeled as edges with the corre-
sponding Leontis-Westhof nomenclature. Nodes represent nucleotides. Blue
edges are local interactions and red edges are long-range interactions. Black
directed edges represent backbone interactions and point from the 5’ to 3’
end of the chain.
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